Carcinogenic adducts induce distinct DNA polymerase binding orientations
نویسندگان
چکیده
DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear. Here, we measure interactions between a DNA polymerase and carcinogenic DNA adducts in real-time by single-molecule fluorescence. We find the degree to which an adduct affects polymerase binding to the DNA depends on the adduct location with respect to the primer terminus, the adduct structure and the nucleotides present in the solution. Not only do the adducts influence the polymerase dwell time on the DNA but also its binding position and orientation. Finally, we have directly observed an adduct- and mismatch-induced intermediate state, which may be an obligatory step in the DNA polymerase proofreading mechanism.
منابع مشابه
Using polymerase arrest to detect DNA binding specificity of aristolochic acid in the mouse H-ras gene.
The distribution of DNA adducts formed by the two main components, aristolochic acid I (AAI) and aristolochic acid II (AAII), of the carcinogenic plant extract aristolochic acid (AA) was examined in a plasmid containing exon 2 of the mouse c-H-ras gene by a polymerase arrest assay. AAI and AAII were reacted with plasmid DNA by reductive activation and the resulting DNA adducts were identified a...
متن کاملDNA Polymerase: Structural Homology, Conformational Dynamics, and the Effects of Carcinogenic DNA Adducts
DNA replication is vital for an organism to proliferate and lying at the heart of this process is the enzyme DNA polymerase. Most DNA polymerases have a similar three dimensional fold, akin to a human right hand, despite differences in sequence homology. This structural homology would predict a relatively unvarying mechanism for DNA synthesis yet various polymerases exhibit markedly different p...
متن کاملAcrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair.
The tumor suppressor gene p53 is frequently mutated in cigarette smoke (CS)-related lung cancer. The p53 binding pattern of carcinogenic polycyclic aromatic hydrocarbons (PAHs) found in CS coincides with the p53 mutational pattern found in lung cancer, and PAHs have thus been considered to be major culprits for lung cancer. However, compared with other carcinogenic compounds, such as aldehydes,...
متن کاملMechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluo...
متن کاملThe ability of four catechol estrogens of 17beta-estradiol and estrone to induce DNA adducts in Syrian hamster embryo fibroblasts.
Catechol estrogens are considered critical intermediates in estrogen-induced carcinogenesis. We demonstrated previously that 17beta-estradiol (E(2)), estrone (E(1)) and four of their catechol estrogens, 2- and 4-hydroxyestradiols (2- and 4-OHE(2)), and 2- and 4-hydroxyestrones (2- and 4-OHE(1)) induce morphological transformation in Syrian hamster embryo (SHE) fibroblasts, and the transforming ...
متن کامل